cugraph_dgl#
Description#
RAPIDS cugraph_dgl provides a duck-typed version of the DGLGraph class, which uses cugraph for storing graph structure and node/edge feature data. Using cugraph as the backend allows DGL users to access a collection of GPU accelerated algorithms for graph analytics, such as centrality computation and community detection.
Conda#
Install and update cugraph-dgl and the required dependencies using the command:
conda install mamba -n base -c conda-forge
mamba install cugraph-dgl -c rapidsai-nightly -c rapidsai -c pytorch -c conda-forge -c nvidia -c dglteam
Build from Source#
Create the conda development environment#
mamba env create -n cugraph_dgl_dev --file conda/cugraph_dgl_dev_11.6.yml
Install in editable mode#
pip install -e .
Run tests#
pytest tests/*
Usage#
+from cugraph_dgl.convert import cugraph_storage_from_heterograph
+cugraph_g = cugraph_storage_from_heterograph(dgl_g)
sampler = dgl.dataloading.NeighborSampler(
[15, 10, 5], prefetch_node_feats=['feat'], prefetch_labels=['label'])
train_dataloader = dgl.dataloading.DataLoader(
- dgl_g,
+ cugraph_g,
train_idx,
sampler,
device=device,
batch_size=1024,
shuffle=True,
drop_last=False,
num_workers=0)