29 #include <treelite/c_api.h>
30 #include <treelite/tree.h>
31 #include <treelite/typeinfo.h>
34 namespace experimental {
40 template <tree_layout layout,
typename T>
43 std::conditional_t<layout == tree_layout::depth_first, std::stack<T>, std::queue<T>>;
44 void add(T
const& val) { data_.push(val); }
45 void add(T
const& hot, T
const& distant)
58 auto result = data_.top();
62 auto result = data_.front();
75 [[nodiscard]]
auto empty() {
return data_.empty(); }
76 auto size() {
return data_.size(); }
94 template <tree_layout layout>
96 template <
typename tl_threshold_t,
typename tl_output_t>
98 treelite::Tree<tl_threshold_t, tl_output_t>
const&
tree;
107 auto result = std::vector<tl_output_t>{};
122 return tree.SplitType(
node_id) == treelite::SplitFeatureType::kCategorical;
131 result = (default_child ==
tree.RightChild(
node_id));
133 result = (default_child ==
tree.LeftChild(
node_id));
137 if (tl_operator == treelite::Operator::kLT || tl_operator == treelite::Operator::kLE) {
138 result = (default_child ==
tree.LeftChild(
node_id));
140 result = (default_child ==
tree.RightChild(
node_id));
150 auto result = decltype(
tree.MatchingCategories(
node_id)){};
158 return tl_operator == treelite::Operator::kGT || tl_operator == treelite::Operator::kLE;
162 template <
typename tl_threshold_t,
typename tl_output_t,
typename lambda_t>
163 void node_for_each(treelite::Tree<tl_threshold_t, tl_output_t>
const& tl_tree, lambda_t&& lambda)
165 using node_index_t = decltype(tl_tree.LeftChild(0));
167 to_be_visited.
add(node_index_t{});
171 parent_indices.
add(cur_index);
173 while (!to_be_visited.empty()) {
174 auto node_id = to_be_visited.next();
175 auto remaining_size = to_be_visited.size();
178 tl_tree, node_id, parent_indices.next(), cur_index};
179 lambda(tl_node, node_id);
181 if (!tl_tree.IsLeaf(node_id)) {
182 auto tl_left_id = tl_tree.LeftChild(node_id);
183 auto tl_right_id = tl_tree.RightChild(node_id);
184 auto tl_operator = tl_tree.ComparisonOp(node_id);
185 if (!tl_node.is_categorical()) {
186 if (tl_operator == treelite::Operator::kLT || tl_operator == treelite::Operator::kLE) {
187 to_be_visited.add(tl_right_id, tl_left_id);
188 }
else if (tl_operator == treelite::Operator::kGT ||
189 tl_operator == treelite::Operator::kGE) {
190 to_be_visited.add(tl_left_id, tl_right_id);
195 if (tl_tree.CategoriesListRightChild(node_id)) {
196 to_be_visited.add(tl_left_id, tl_right_id);
198 to_be_visited.add(tl_right_id, tl_left_id);
201 parent_indices.add(cur_index, cur_index);
207 template <
typename tl_threshold_t,
typename tl_output_t,
typename iter_t,
typename lambda_t>
212 node_for_each(tl_tree, [&output_iter, &lambda](
auto&& tl_node,
int tl_node_id) {
213 *output_iter = lambda(tl_node);
218 template <
typename tl_threshold_t,
typename tl_output_t,
typename T,
typename lambda_t>
224 node_for_each(tl_tree, [&result, &lambda](
auto&& tl_node,
int tl_node_id) {
225 result = lambda(result, tl_node);
230 template <
typename tl_threshold_t,
typename tl_output_t>
231 auto get_nodes(treelite::Tree<tl_threshold_t, tl_output_t>
const& tl_tree)
233 auto result = std::vector<treelite_node<tl_threshold_t, tl_output_t>>{};
234 result.reserve(tl_tree.num_nodes);
239 template <
typename tl_threshold_t,
typename tl_output_t>
240 auto get_offsets(treelite::Tree<tl_threshold_t, tl_output_t>
const& tl_tree)
242 auto result = std::vector<index_type>(tl_tree.num_nodes);
244 for (
auto i =
index_type{}; i < nodes.size(); ++i) {
248 result[nodes[i].parent_index] =
index_type{i - nodes[i].parent_index};
254 template <
typename lambda_t>
257 tl_model.Dispatch([&lambda](
auto&& concrete_tl_model) {
258 std::for_each(std::begin(concrete_tl_model.trees), std::end(concrete_tl_model.trees), lambda);
262 template <
typename iter_t,
typename lambda_t>
263 void tree_transform(treelite::Model
const& tl_model, iter_t output_iter, lambda_t&& lambda)
265 tl_model.Dispatch([&output_iter, &lambda](
auto&& concrete_tl_model) {
267 std::end(concrete_tl_model.trees),
273 template <
typename T,
typename lambda_t>
277 tree_for_each(tl_model, [&result, &lambda](
auto&& tree) { result = lambda(result, tree); });
285 [&result](
auto&& concrete_tl_model) { result = concrete_tl_model.trees.size(); });
291 auto result = std::vector<std::vector<index_type>>{};
294 tl_model, std::back_inserter(result), [
this](
auto&& tree) {
return get_offsets(tree); });
300 auto result = std::vector<index_type>{};
302 tl_model, std::back_inserter(result), [](
auto&& tree) {
return tree.num_nodes; });
310 [&result](
auto&& concrete_tl_model) { result = concrete_tl_model.task_param.num_class; });
318 [&result](
auto&& concrete_tl_model) { result = concrete_tl_model.num_feature; });
325 return node_accumulate(tree, accum, [](
auto&& cur_accum,
auto&& tl_node) {
326 auto result = cur_accum;
327 for (
auto&& cat : tl_node.categories()) {
328 result = (cat + 1 > result) ? cat + 1 : result;
338 return node_accumulate(tree, accum, [](
auto&& cur_accum,
auto&& tl_node) {
339 return cur_accum + tl_node.is_categorical();
347 return node_accumulate(tree, accum, [](
auto&& cur_accum,
auto&& tl_node) {
348 return cur_accum + (tl_node.is_leaf() && tl_node.get_output().size() > 1);
355 auto result =
double{};
356 tl_model.Dispatch([&result](
auto&& concrete_tl_model) {
357 if (concrete_tl_model.average_tree_output) {
358 if (concrete_tl_model.task_type == treelite::TaskType::kMultiClfGrovePerClass) {
359 result = concrete_tl_model.trees.size() / concrete_tl_model.task_param.num_class;
361 result = concrete_tl_model.trees.size();
372 auto result =
double{};
374 [&result](
auto&& concrete_tl_model) { result = concrete_tl_model.param.global_bias; });
381 tl_model.Dispatch([&result](
auto&& concrete_tl_model) {
382 auto tl_pred_transform = std::string{concrete_tl_model.param.pred_transform};
383 if (tl_pred_transform == std::string{
"identity"} ||
384 tl_pred_transform == std::string{
"identity_multiclass"}) {
387 }
else if (tl_pred_transform == std::string{
"signed_square"}) {
389 }
else if (tl_pred_transform == std::string{
"hinge"}) {
391 }
else if (tl_pred_transform == std::string{
"sigmoid"}) {
392 result.constant = concrete_tl_model.param.sigmoid_alpha;
394 }
else if (tl_pred_transform == std::string{
"exponential"}) {
396 }
else if (tl_pred_transform == std::string{
"exponential_standard_ratio"}) {
397 result.constant = -concrete_tl_model.param.ratio_c / std::log(2);
399 }
else if (tl_pred_transform == std::string{
"logarithm_one_plus_exp"}) {
401 }
else if (tl_pred_transform == std::string{
"max_index"}) {
403 }
else if (tl_pred_transform == std::string{
"softmax"}) {
405 }
else if (tl_pred_transform == std::string{
"multiclass_ova"}) {
406 result.constant = concrete_tl_model.param.sigmoid_alpha;
418 switch (tl_model.GetThresholdType()) {
419 case treelite::TypeInfo::kFloat64: result =
true;
break;
420 case treelite::TypeInfo::kFloat32: result =
false;
break;
429 switch (tl_model.GetThresholdType()) {
430 case treelite::TypeInfo::kFloat64: result =
true;
break;
431 case treelite::TypeInfo::kFloat32: result =
false;
break;
432 case treelite::TypeInfo::kUInt32: result =
false;
break;
441 switch (tl_model.GetThresholdType()) {
442 case treelite::TypeInfo::kFloat64: result =
false;
break;
443 case treelite::TypeInfo::kFloat32: result =
false;
break;
444 case treelite::TypeInfo::kUInt32: result =
true;
break;
454 template <index_type variant_index>
456 treelite::Model
const& tl_model,
460 std::vector<std::vector<index_type>>
const& offsets,
467 if constexpr (variant_index != std::variant_size_v<decision_forest_variant>) {
468 if (variant_index == target_variant_index) {
469 using forest_model_t = std::variant_alternative_t<variant_index, decision_forest_variant>;
471 detail::decision_forest_builder<forest_model_t>(max_num_categories, align_bytes);
472 auto tree_count = num_trees(tl_model);
474 tree_for_each(tl_model, [
this, &builder, &tree_index, &offsets](
auto&& tree) {
475 builder.start_new_tree();
478 tree, [&builder, &tree_index, &node_index, &offsets](
auto&& node,
int tl_node_id) {
479 if (node.is_leaf()) {
480 auto output = node.get_output();
481 builder.set_output_size(output.size());
482 if (output.size() > index_type{1}) {
483 builder.add_leaf_vector_node(std::begin(output), std::end(output), tl_node_id);
485 builder.add_node(
typename forest_model_t::io_type(output[0]), tl_node_id,
true);
488 if (node.is_categorical()) {
489 auto categories = node.get_categories();
490 builder.add_categorical_node(std::begin(categories),
491 std::end(categories),
493 node.default_distant(),
495 offsets[tree_index][node_index]);
497 builder.add_node(
typename forest_model_t::threshold_type(node.threshold()),
500 node.default_distant(),
503 offsets[tree_index][node_index],
504 node.is_inclusive());
512 builder.set_average_factor(get_average_factor(tl_model));
513 builder.set_bias(get_bias(tl_model));
514 auto postproc_params = get_postproc_params(tl_model);
515 builder.set_element_postproc(postproc_params.element);
516 builder.set_row_postproc(postproc_params.row);
517 builder.set_postproc_constant(postproc_params.constant);
519 result.template emplace<variant_index>(
520 builder.get_decision_forest(num_feature, num_class, mem_type, device, stream));
522 result = import_to_specific_variant<variant_index + 1>(target_variant_index,
559 auto import(treelite::Model
const& tl_model,
561 std::optional<bool> use_double_precision = std::nullopt,
567 auto num_feature = get_num_feature(tl_model);
568 auto max_num_categories = get_max_num_categories(tl_model);
569 auto num_categorical_nodes = get_num_categorical_nodes(tl_model);
570 auto num_leaf_vector_nodes = get_num_leaf_vector_nodes(tl_model);
571 auto use_double_thresholds = use_double_precision.value_or(uses_double_thresholds(tl_model));
573 auto offsets = get_offsets(tl_model);
574 auto max_offset = std::accumulate(
578 [&offsets](
auto&& cur_max,
auto&& tree_offsets) {
580 *std::max_element(std::begin(tree_offsets), std::end(tree_offsets)));
582 auto tree_sizes = std::vector<index_type>{};
585 std::back_inserter(tree_sizes),
586 [](
auto&& tree_offsets) {
return tree_offsets.size(); });
591 num_categorical_nodes,
593 num_leaf_vector_nodes,
595 auto num_class = get_num_class(tl_model);
596 return forest_model{import_to_specific_variant<
index_type{}>(variant_index,
635 std::optional<bool> use_double_precision = std::nullopt,
640 auto result = forest_model{};
642 case tree_layout::depth_first:
643 result = treelite_importer<tree_layout::depth_first>{}.import(
644 tl_model, align_bytes, use_double_precision, dev_type, device, stream);
646 case tree_layout::breadth_first:
647 result = treelite_importer<tree_layout::breadth_first>{}.import(
648 tl_model, align_bytes, use_double_precision, dev_type, device, stream);
681 std::optional<bool> use_double_precision = std::nullopt,
689 use_double_precision,
math_t max(math_t a, math_t b)
Definition: learning_rate.h:26
tree_layout
Definition: tree_layout.hpp:20
element_op
Definition: postproc_ops.hpp:29
uint32_t index_type
Definition: index_type.hpp:21
auto get_forest_variant_index(bool use_double_thresholds, index_type max_node_offset, index_type num_features, index_type num_categorical_nodes=index_type{}, index_type max_num_categories=index_type{}, index_type num_vector_leaves=index_type{}, tree_layout layout=preferred_tree_layout)
Definition: decision_forest.hpp:434
auto import_from_treelite_handle(ModelHandle tl_handle, tree_layout layout=preferred_tree_layout, index_type align_bytes=index_type{}, std::optional< bool > use_double_precision=std::nullopt, raft_proto::device_type dev_type=raft_proto::device_type::cpu, int device=0, raft_proto::cuda_stream stream=raft_proto::cuda_stream{})
Definition: treelite_importer.hpp:678
std::variant< detail::preset_decision_forest< std::variant_alternative_t< 0, detail::specialization_variant >::layout, std::variant_alternative_t< 0, detail::specialization_variant >::is_double_precision, std::variant_alternative_t< 0, detail::specialization_variant >::has_large_trees >, detail::preset_decision_forest< std::variant_alternative_t< 1, detail::specialization_variant >::layout, std::variant_alternative_t< 1, detail::specialization_variant >::is_double_precision, std::variant_alternative_t< 1, detail::specialization_variant >::has_large_trees >, detail::preset_decision_forest< std::variant_alternative_t< 2, detail::specialization_variant >::layout, std::variant_alternative_t< 2, detail::specialization_variant >::is_double_precision, std::variant_alternative_t< 2, detail::specialization_variant >::has_large_trees >, detail::preset_decision_forest< std::variant_alternative_t< 3, detail::specialization_variant >::layout, std::variant_alternative_t< 3, detail::specialization_variant >::is_double_precision, std::variant_alternative_t< 3, detail::specialization_variant >::has_large_trees >, detail::preset_decision_forest< std::variant_alternative_t< 4, detail::specialization_variant >::layout, std::variant_alternative_t< 4, detail::specialization_variant >::is_double_precision, std::variant_alternative_t< 4, detail::specialization_variant >::has_large_trees >, detail::preset_decision_forest< std::variant_alternative_t< 5, detail::specialization_variant >::layout, std::variant_alternative_t< 5, detail::specialization_variant >::is_double_precision, std::variant_alternative_t< 5, detail::specialization_variant >::has_large_trees >, detail::preset_decision_forest< std::variant_alternative_t< 6, detail::specialization_variant >::layout, std::variant_alternative_t< 6, detail::specialization_variant >::is_double_precision, std::variant_alternative_t< 6, detail::specialization_variant >::has_large_trees >, detail::preset_decision_forest< std::variant_alternative_t< 7, detail::specialization_variant >::layout, std::variant_alternative_t< 7, detail::specialization_variant >::is_double_precision, std::variant_alternative_t< 7, detail::specialization_variant >::has_large_trees > > decision_forest_variant
Definition: decision_forest.hpp:414
row_op
Definition: postproc_ops.hpp:22
auto import_from_treelite_model(treelite::Model const &tl_model, tree_layout layout=preferred_tree_layout, index_type align_bytes=index_type{}, std::optional< bool > use_double_precision=std::nullopt, raft_proto::device_type dev_type=raft_proto::device_type::cpu, int device=0, raft_proto::cuda_stream stream=raft_proto::cuda_stream{})
Definition: treelite_importer.hpp:632
void transform(const raft::handle_t &handle, const KMeansParams ¶ms, const float *centroids, const float *X, int n_samples, int n_features, float *X_new)
Transform X to a cluster-distance space.
Definition: dbscan.hpp:27
int cuda_stream
Definition: cuda_stream.hpp:25
device_type
Definition: device_type.hpp:18
Definition: treelite_importer.hpp:82
element_op element
Definition: treelite_importer.hpp:83
double constant
Definition: treelite_importer.hpp:85
row_op row
Definition: treelite_importer.hpp:84
Definition: treelite_importer.hpp:41
auto empty()
Definition: treelite_importer.hpp:75
auto next()
Definition: treelite_importer.hpp:55
auto peek()
Definition: treelite_importer.hpp:67
void add(T const &val)
Definition: treelite_importer.hpp:44
auto size()
Definition: treelite_importer.hpp:76
void add(T const &hot, T const &distant)
Definition: treelite_importer.hpp:45
std::conditional_t< layout==tree_layout::depth_first, std::stack< T >, std::queue< T > > backing_container_t
Definition: treelite_importer.hpp:43
Definition: exceptions.hpp:36
Definition: treelite_importer.hpp:97
auto get_feature()
Definition: treelite_importer.hpp:118
auto is_categorical()
Definition: treelite_importer.hpp:120
auto get_categories()
Definition: treelite_importer.hpp:116
auto threshold()
Definition: treelite_importer.hpp:146
index_type parent_index
Definition: treelite_importer.hpp:100
auto is_leaf()
Definition: treelite_importer.hpp:103
auto get_output()
Definition: treelite_importer.hpp:105
auto default_distant()
Definition: treelite_importer.hpp:125
index_type own_index
Definition: treelite_importer.hpp:101
auto is_inclusive()
Definition: treelite_importer.hpp:155
int node_id
Definition: treelite_importer.hpp:99
treelite::Tree< tl_threshold_t, tl_output_t > const & tree
Definition: treelite_importer.hpp:98
auto categories()
Definition: treelite_importer.hpp:148
Definition: treelite_importer.hpp:95
auto get_nodes(treelite::Tree< tl_threshold_t, tl_output_t > const &tl_tree)
Definition: treelite_importer.hpp:231
void tree_transform(treelite::Model const &tl_model, iter_t output_iter, lambda_t &&lambda)
Definition: treelite_importer.hpp:263
auto node_accumulate(treelite::Tree< tl_threshold_t, tl_output_t > const &tl_tree, T init, lambda_t &&lambda)
Definition: treelite_importer.hpp:219
void node_transform(treelite::Tree< tl_threshold_t, tl_output_t > const &tl_tree, iter_t output_iter, lambda_t &&lambda)
Definition: treelite_importer.hpp:208
auto uses_double_outputs(treelite::Model const &tl_model)
Definition: treelite_importer.hpp:426
auto get_num_feature(treelite::Model const &tl_model)
Definition: treelite_importer.hpp:314
auto get_tree_sizes(treelite::Model const &tl_model)
Definition: treelite_importer.hpp:298
auto import_to_specific_variant(index_type target_variant_index, treelite::Model const &tl_model, index_type num_class, index_type num_feature, index_type max_num_categories, std::vector< std::vector< index_type >> const &offsets, index_type align_bytes=index_type{}, raft_proto::device_type mem_type=raft_proto::device_type::cpu, int device=0, raft_proto::cuda_stream stream=raft_proto::cuda_stream{})
Definition: treelite_importer.hpp:455
auto tree_accumulate(treelite::Model const &tl_model, T init, lambda_t &&lambda)
Definition: treelite_importer.hpp:274
auto get_num_leaf_vector_nodes(treelite::Model const &tl_model)
Definition: treelite_importer.hpp:344
void node_for_each(treelite::Tree< tl_threshold_t, tl_output_t > const &tl_tree, lambda_t &&lambda)
Definition: treelite_importer.hpp:163
auto get_num_class(treelite::Model const &tl_model)
Definition: treelite_importer.hpp:306
auto get_postproc_params(treelite::Model const &tl_model)
Definition: treelite_importer.hpp:378
auto get_offsets(treelite::Tree< tl_threshold_t, tl_output_t > const &tl_tree)
Definition: treelite_importer.hpp:240
auto get_num_categorical_nodes(treelite::Model const &tl_model)
Definition: treelite_importer.hpp:335
auto get_bias(treelite::Model const &tl_model)
Definition: treelite_importer.hpp:370
auto uses_double_thresholds(treelite::Model const &tl_model)
Definition: treelite_importer.hpp:415
auto uses_integer_outputs(treelite::Model const &tl_model)
Definition: treelite_importer.hpp:438
auto get_average_factor(treelite::Model const &tl_model)
Definition: treelite_importer.hpp:353
auto get_offsets(treelite::Model const &tl_model)
Definition: treelite_importer.hpp:289
void tree_for_each(treelite::Model const &tl_model, lambda_t &&lambda)
Definition: treelite_importer.hpp:255
auto get_max_num_categories(treelite::Model const &tl_model)
Definition: treelite_importer.hpp:322
auto num_trees(treelite::Model const &tl_model)
Definition: treelite_importer.hpp:281
void * ModelHandle
Definition: treelite_defs.hpp:23