20 #include <raft/distance/distance_types.hpp>
106 raft::distance::DistanceType
metric = raft::distance::DistanceType::L2SqrtExpanded;
141 int64_t* knn_indices,
144 float* kl_div =
nullptr);
181 float* kl_div =
nullptr);
Definition: params.hpp:34
#define CUML_LEVEL_INFO
Definition: log_levels.hpp:28
Definition: dbscan.hpp:27
void TSNE_fit(const raft::handle_t &handle, float *X, float *Y, int n, int p, int64_t *knn_indices, float *knn_dists, TSNEParams ¶ms, float *kl_div=nullptr)
Dimensionality reduction via TSNE using Barnes-Hut, Fourier Interpolation, or naive methods....
void TSNE_fit_sparse(const raft::handle_t &handle, int *indptr, int *indices, float *data, float *Y, int nnz, int n, int p, int *knn_indices, float *knn_dists, TSNEParams ¶ms, float *kl_div=nullptr)
Dimensionality reduction via TSNE using either Barnes Hut O(NlogN) or brute force O(N^2).
TSNE_ALGORITHM
Definition: tsne.h:28
@ BARNES_HUT
Definition: tsne.h:28
@ FFT
Definition: tsne.h:28
@ EXACT
Definition: tsne.h:28
Definition: dbscan.hpp:23
float perplexity
Definition: tsne.h:45
float pre_learning_rate
Definition: tsne.h:70
int perplexity_max_iter
Definition: tsne.h:48
bool square_distances
Definition: tsne.h:103
bool initialize_embeddings
Definition: tsne.h:97
int exaggeration_iter
Definition: tsne.h:64
int verbosity
Definition: tsne.h:94
float min_grad_norm
Definition: tsne.h:80
float theta
Definition: tsne.h:39
float late_exaggeration
Definition: tsne.h:59
TSNE_ALGORITHM algorithm
Definition: tsne.h:112
long long random_state
Definition: tsne.h:91
float pre_momentum
Definition: tsne.h:83
int n_neighbors
Definition: tsne.h:35
raft::distance::DistanceType metric
Definition: tsne.h:106
float early_exaggeration
Definition: tsne.h:55
float post_momentum
Definition: tsne.h:86
int dim
Definition: tsne.h:32
float min_gain
Definition: tsne.h:67
float post_learning_rate
Definition: tsne.h:73
float epssq
Definition: tsne.h:42
float perplexity_tol
Definition: tsne.h:51
int max_iter
Definition: tsne.h:76
float p
Definition: tsne.h:109