21 #include <raft/distance/distance_types.hpp>
107 raft::distance::DistanceType
metric = raft::distance::DistanceType::L2SqrtExpanded;
142 int64_t* knn_indices,
145 float* kl_div =
nullptr);
182 float* kl_div =
nullptr);
Definition: params.hpp:34
#define CUML_LEVEL_INFO
Definition: log_levels.hpp:28
Definition: dbscan.hpp:30
void TSNE_fit(const raft::handle_t &handle, float *X, float *Y, int n, int p, int64_t *knn_indices, float *knn_dists, TSNEParams ¶ms, float *kl_div=nullptr)
Dimensionality reduction via TSNE using Barnes-Hut, Fourier Interpolation, or naive methods....
void TSNE_fit_sparse(const raft::handle_t &handle, int *indptr, int *indices, float *data, float *Y, int nnz, int n, int p, int *knn_indices, float *knn_dists, TSNEParams ¶ms, float *kl_div=nullptr)
Dimensionality reduction via TSNE using either Barnes Hut O(NlogN) or brute force O(N^2).
TSNE_ALGORITHM
Definition: tsne.h:29
@ BARNES_HUT
Definition: tsne.h:29
@ FFT
Definition: tsne.h:29
@ EXACT
Definition: tsne.h:29
Definition: dbscan.hpp:26
float perplexity
Definition: tsne.h:46
float pre_learning_rate
Definition: tsne.h:71
int perplexity_max_iter
Definition: tsne.h:49
bool square_distances
Definition: tsne.h:104
bool initialize_embeddings
Definition: tsne.h:98
int exaggeration_iter
Definition: tsne.h:65
int verbosity
Definition: tsne.h:95
float min_grad_norm
Definition: tsne.h:81
float theta
Definition: tsne.h:40
float late_exaggeration
Definition: tsne.h:60
TSNE_ALGORITHM algorithm
Definition: tsne.h:113
long long random_state
Definition: tsne.h:92
float pre_momentum
Definition: tsne.h:84
int n_neighbors
Definition: tsne.h:36
raft::distance::DistanceType metric
Definition: tsne.h:107
float early_exaggeration
Definition: tsne.h:56
float post_momentum
Definition: tsne.h:87
int dim
Definition: tsne.h:33
float min_gain
Definition: tsne.h:68
float post_learning_rate
Definition: tsne.h:74
float epssq
Definition: tsne.h:43
float perplexity_tol
Definition: tsne.h:52
int max_iter
Definition: tsne.h:77
float p
Definition: tsne.h:110