cudf.IntervalIndex#
- class cudf.IntervalIndex(data, closed=None, dtype=None, copy=False, name=None)#
Immutable index of intervals that are closed on the same side.
- Parameters
- dataarray-like (1-dimensional)
Array-like containing Interval objects from which to build the IntervalIndex.
- closed{“left”, “right”, “both”, “neither”}, default “right”
Whether the intervals are closed on the left-side, right-side, both or neither.
- dtypedtype or None, default None
If None, dtype will be inferred.
- copybool, default False
Copy the input data.
- nameobject, optional
Name to be stored in the index.
- Returns
- IntervalIndex
- __init__(data, closed=None, dtype=None, copy=False, name=None)#
Methods
__init__
(data[, closed, dtype, copy, name])abs
()Return a Series/DataFrame with absolute numeric value of each element.
all
([axis, skipna, level])Return whether all elements are True in DataFrame.
any
()Return whether any elements is True in DataFrame.
append
(other)Append a collection of Index objects together.
argsort
([axis, kind, order, ascending, ...])Return the integer indices that would sort the Series values.
astype
(dtype[, copy])Create an Index with values cast to dtypes.
copy
([name, deep, dtype, names])Make a copy of this object.
deserialize
(header, frames)Generate an object from a serialized representation.
device_deserialize
(header, frames)Perform device-side deserialization tasks.
device_serialize
()Serialize data and metadata associated with device memory.
difference
(other[, sort])Return a new Index with elements from the index that are not in other.
dot
(other[, reflect])Get dot product of frame and other, (binary operator dot).
drop_duplicates
([keep, nulls_are_equal])Drop duplicate rows in index.
dropna
([how])Drop null rows from Index.
duplicated
([keep])Indicate duplicate index values.
equals
(other, **kwargs)Determine if two Index objects contain the same elements.
factorize
([na_sentinel])Encode the input values as integer labels.
fillna
([value, method, axis, inplace, limit])Fill null values with
value
or specifiedmethod
.find_label_range
(first, last)Find range that starts with first and ends with last, inclusively.
from_arrow
(array)Create from PyArrow Array/ChunkedArray.
from_breaks
([closed, name, copy, dtype])Construct an IntervalIndex from an array of splits.
from_pandas
(index[, nan_as_null])Convert from a Pandas Index.
get_level_values
(level)Return an Index of values for requested level.
get_loc
(key[, method, tolerance])Get integer location, slice or boolean mask for requested label.
get_slice_bound
(label, side[, kind])Calculate slice bound that corresponds to given label.
head
([n])Return the first n rows.
host_deserialize
(header, frames)Perform device-side deserialization tasks.
host_serialize
()Serialize data and metadata associated with host memory.
intersection
(other[, sort])Form the intersection of two Index objects.
is_boolean
()Check if the Index only consists of booleans.
is_categorical
()Check if the Index holds categorical data.
is_floating
()Check if the Index is a floating type.
is_integer
()Check if the Index only consists of integers.
is_interval
()Check if the Index holds Interval objects.
is_numeric
()Check if the Index only consists of numeric data.
is_object
()Check if the Index is of the object dtype.
isin
(values)Return a boolean array where the index values are in values.
isna
()Identify missing values.
isnull
()Identify missing values.
join
(other[, how, level, return_indexers, sort])Compute join_index and indexers to conform data structures to the new index.
kurt
([axis, skipna, level, numeric_only])Return Fisher's unbiased kurtosis of a sample.
kurtosis
([axis, skipna, level, numeric_only])Return Fisher's unbiased kurtosis of a sample.
mask
(cond[, other, inplace])Replace values where the condition is True.
max
([axis, skipna, level, numeric_only])Return the maximum of the values in the DataFrame.
mean
([axis, skipna, level, numeric_only])Return the mean of the values for the requested axis.
median
([axis, skipna, level, numeric_only])Return the median of the values for the requested axis.
memory_usage
([deep])Return the memory usage of an object.
min
([axis, skipna, level, numeric_only])Return the minimum of the values in the DataFrame.
nans_to_nulls
()Convert nans (if any) to nulls
notna
()Identify non-missing values.
notnull
()Identify non-missing values.
nunique
([dropna])Return count of unique values for the column.
pipe
(func, *args, **kwargs)Apply
func(self, *args, **kwargs)
.prod
([axis, skipna, dtype, level, ...])Return product of the values in the DataFrame.
product
([axis, skipna, dtype, level, ...])Return product of the values in the DataFrame.
rename
(name[, inplace])Alter Index name.
repeat
(repeats[, axis])Repeat elements of a Index.
rolling
(window[, min_periods, center, axis, ...])Rolling window calculations.
searchsorted
(values[, side, ascending, ...])Find indices where elements should be inserted to maintain order
serialize
()Generate an equivalent serializable representation of an object.
set_names
(names[, level, inplace])Set Index or MultiIndex name.
skew
([axis, skipna, level, numeric_only])Return unbiased Fisher-Pearson skew of a sample.
sort_values
([return_indexer, ascending, ...])Return a sorted copy of the index, and optionally return the indices that sorted the index itself.
std
([axis, skipna, level, ddof, numeric_only])Return sample standard deviation of the DataFrame.
sum
([axis, skipna, dtype, level, ...])Return sum of the values in the DataFrame.
sum_of_squares
([dtype])Return the sum of squares of values.
tail
([n])Returns the last n rows as a new DataFrame or Series
take
(indices[, axis, allow_fill, fill_value])Return a new index containing the rows specified by indices
to_arrow
()Convert to a PyArrow Array.
to_cupy
([dtype, copy, na_value])Convert the Frame to a CuPy array.
to_dlpack
()Converts a cuDF object into a DLPack tensor.
to_frame
([index, name])Create a DataFrame with a column containing this Index
to_hdf
(path_or_buf, key, *args, **kwargs)Write the contained data to an HDF5 file using HDFStore.
to_json
([path_or_buf])Convert the cuDF object to a JSON string.
to_list
()to_numpy
([dtype, copy, na_value])Convert the Frame to a NumPy array.
to_pandas
([nullable])Convert to a Pandas Index.
to_series
([index, name])Create a Series with both index and values equal to the index keys.
to_string
()Convert to string
tolist
()union
(other[, sort])Form the union of two Index objects.
unique
()Return unique values in the index.
var
([axis, skipna, level, ddof, numeric_only])Return unbiased variance of the DataFrame.
where
(cond[, other, inplace])Replace values where the condition is False.
Attributes
dtype
dtype of the underlying values in GenericIndex.
empty
Indicator whether DataFrame or Series is empty.
has_duplicates
hasnans
Return True if there are any NaNs or nulls.
is_monotonic
Return boolean if values in the object are monotonically increasing.
is_monotonic_decreasing
Return boolean if values in the object are monotonically decreasing.
is_monotonic_increasing
Return boolean if values in the object are monotonically increasing.
is_unique
Return boolean if values in the object are unique.
name
Get the name of this object.
names
Returns a tuple containing the name of the Index.
ndim
Number of dimensions of the underlying data, by definition 1.
nlevels
Number of levels.
shape
Get a tuple representing the dimensionality of the Index.
size
Return the number of elements in the underlying data.
Return a CuPy representation of the DataFrame.
values_host
Return a NumPy representation of the data.