cudf.to_datetime#
- cudf.to_datetime(arg, errors='raise', dayfirst=False, yearfirst=False, utc=None, format=None, exact=True, unit='ns', infer_datetime_format=False, origin='unix', cache=True)#
Convert argument to datetime.
- Parameters
- argint, float, str, datetime, list, tuple, 1-d array,
Series DataFrame/dict-like The object to convert to a datetime.
- errors{‘ignore’, ‘raise’, ‘coerce’, ‘warn’}, default ‘raise’
If ‘raise’, then invalid parsing will raise an exception.
If ‘coerce’, then invalid parsing will be set as NaT.
- If ‘warn’prints last exceptions as warnings and
return the input.
If ‘ignore’, then invalid parsing will return the input.
- dayfirstbool, default False
Specify a date parse order if arg is str or its list-likes. If True, parses dates with the day first, eg 10/11/12 is parsed as 2012-11-10. Warning: dayfirst=True is not strict, but will prefer to parse with day first (this is a known bug, based on dateutil behavior).
- formatstr, default None
The strftime to parse time, eg “%d/%m/%Y”, note that “%f” will parse all the way up to nanoseconds. See strftime documentation for more information on choices: https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior.
- unitstr, default ‘ns’
The unit of the arg (D,s,ms,us,ns) denote the unit, which is an integer or float number. This will be based off the origin(unix epoch start). Example, with unit=’ms’ and origin=’unix’ (the default), this would calculate the number of milliseconds to the unix epoch start.
- infer_datetime_formatbool, default False
If True and no format is given, attempt to infer the format of the datetime strings, and if it can be inferred, switch to a faster method of parsing them. In some cases this can increase the parsing speed by ~5-10x.
- Returns
- datetime
If parsing succeeded. Return type depends on input: - list-like: DatetimeIndex - Series: Series of datetime64 dtype - scalar: Timestamp
Examples
Assembling a datetime from multiple columns of a DataFrame. The keys can be common abbreviations like [‘year’, ‘month’, ‘day’, ‘minute’, ‘second’, ‘ms’, ‘us’, ‘ns’]) or plurals of the same
>>> import cudf >>> df = cudf.DataFrame({'year': [2015, 2016], ... 'month': [2, 3], ... 'day': [4, 5]}) >>> cudf.to_datetime(df) 0 2015-02-04 1 2016-03-05 dtype: datetime64[ns] >>> cudf.to_datetime(1490195805, unit='s') numpy.datetime64('2017-03-22T15:16:45.000000000') >>> cudf.to_datetime(1490195805433502912, unit='ns') numpy.datetime64('1780-11-20T01:02:30.494253056')